Semiparametric Bayesian Modeling of Income Volatility Heterogeneity
نویسندگان
چکیده
منابع مشابه
Bayesian semiparametric stochastic volatility modeling
This paper extends the existing fully parametric Bayesian literature on stochastic volatility to allow for more general return distributions. Instead of specifying a particular distribution for the return innovations, nonparametric Bayesian methods are used to flexibly model the distribution’s skewness and kurtosis while volatility dynamics follow a parametric structure. Our Bayesian approach p...
متن کاملEfficient Semiparametric Garch Modeling of Financial Volatility
We consider a class of semiparametric GARCH models with additive autoregressive components linked together by a dynamic coefficient. We propose estimators for the additive components and the dynamic coefficient based on spline smoothing. The estimation procedure involves only a small number of least squares operations, thus it is computationally efficient. Under regularity conditions, the propo...
متن کاملSemiparametric Bayesian measurement error modeling
This work introduces a Bayesian semi-parametric approach for dealing with regression models where the covariate is measured with error. The main advantage of this extended Bayesian approach is the possibility of considering generalizations of the elliptical family of models by using Dirichlet process priors in the dependent and independent situations. Conditional posterior distributions are imp...
متن کاملBayesian Semiparametric Multivariate GARCH Modeling
This paper proposes a Bayesian nonparametric modeling approach for the return distribution in multivariate GARCH models. In contrast to the parametric literature the return distribution can display general forms of asymmetry and thick tails. An infinite mixture of multivariate normals is given a flexible Dirichlet process prior. The GARCH functional form enters into each of the components of th...
متن کاملA Bayesian semiparametric model for volatility with a leverage effect
A Bayesian semiparametric stochastic volatility model for financial data is developed. This estimates the return distribution from the data allowing for stylized facts such as heavy tails and jumps in prices whilst also allowing for correlation between the returns and changes in volatility, the leverage effect. An efficient MCMC algorithm for inference is described. The model is applied to simu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the American Statistical Association
سال: 2011
ISSN: 0162-1459,1537-274X
DOI: 10.1198/jasa.2011.ap09283